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Abstract On 23 July 2013, a marine gas rig (Hercules 265) ignited in the northern Gulf of Mexico. The rig
burned out of control for 2 days before being extinguished. We conducted a rapid-response sampling cam-
paign near Hercules 265 after the fire to ascertain if sediments and fishes were polluted above earlier base-
line levels. A surface drifter study confirmed that surface ocean water flowed to the southeast of the
Hercules site, while the atmospheric plume generated by the blowout was in eastward direction. Sediment
cores were collected to the SE of the rig at a distance of �0.2, 8, and 18 km using a multicorer, and demersal
fishes were collected from �0.2 to 8 km SE of the rig using a longline (508 hooks). Recently deposited sedi-
ments document that only high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) concentra-
tions decreased with increasing distance from the rig suggesting higher pyrogenic inputs associated with
the blowout. A similar trend was observed in the foraminifera Haynesina germanica, an indicator species of
pollution. In red snapper bile, only HMW PAH metabolites increased in 2013 nearly double those from 2012.
Both surface sediments and fish bile analyses suggest that, in the aftermath of the blowout, increased con-
centration of pyrogenically derived hydrocarbons was transported and deposited in the environment. This
study further emphasizes the need for an ocean observing system and coordinated rapid-response efforts
from an array of scientific disciplines to effectively assess environmental impacts resulting from accidental
releases of oil contaminants.

1. Introduction

On 23 July 2013, a Gulf of Mexico (GoM) petroleum platform owned by Hercules Offshore and operated by
Walter Gas and Oil Inc. developed a gas leak. Subsequently, the platform ignited and 44 workers were safely
evacuated. The platform, Hercules 265, was severely damaged but the well appeared to self-seal. It was
finally sealed when a relief well closed the well bore. The Hercules 265 rig, mat-supported, cantilevered jack-
up platform, was not in production at the time of the fire but drilling was ongoing to prepare the rig to
resume operations. The site is located 86 km south of the Louisiana Coast in 47 m water depth on the conti-
nental shelf, in production block ‘‘South Timbalier #220’’ (Figure 1). Overflights (undertaken by Ms. Bonny
Schumaker, On Wings of Care, Inc., and the U.S. Coast Guard) documented a slick or sheen of hydrocarbons
releasing from the burning rig running roughly SE. The source of these hydrocarbons is unknown but may
have been natural gas condensate, residual liquid oil from the well, or refined oil products released from
the well deck. Because there was evidence of liquid hydrocarbons being released into the water and burn-
ing of hydrocarbons from the damaged rig, there was concern as to the fate of these hydrocarbons and
that they may be transported to the sediments and assimilated by fish in this relatively shallow area.

Comparatively few published studies have documented the impacts of oil and gas production on sediments
or fishes in the near-field surrounding active platforms [Kennicutt II, 1996a, 1996b; McDonald et al., 1996;
Balk et al., 2011]. The studies most relevant to the Hercules 265 event were conducted in the early 1990s at
three natural gas wells in the western GoM, off Texas [Peterson et al., 1996; Kennicutt II, 1996a]. In these stud-
ies, intensive sampling of water, sediments, invertebrates, and fishes was performed to understand the
near-field toxicology associated with gas production facilities. For sediments, the main conclusions were
that elevated polycyclic aromatic hydrocarbon (PAH) concentrations were localized to within a few hundred
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meters of the rigs, and that sediment particle size showed a trend, of coarser sands nearer the rigs
[Kennicutt II, 1996b]. For fishes, comparisons for a number of species were made between the near field
(<100 m) versus the far field (>3000 m). Overall, the bile PAH metabolite data from these fish indicated ele-
vated PAH concentrations relative to baseline values suggesting that pollution from unknown sources was
occurring [Kennicutt II, 1996b]. However, the fish PAH data did not reveal any interpretable spatial trends
relative to the proximity of the rigs (i.e., near-field to far-field differences in PAH levels). This lack of a spatial
trend may have been due to the specific fish species analyzed and their ability to move over these limited
spatial scales.

Large-scale studies of oil producing regions versus distant control areas have shown that chronic pollution
from oil/gas fields can produce a wide variety of sublethal biological effects in fishes [e.g., Balk et al., 2011].
While PAHs may only account for a small percent of crude oil mass or are byproducts of combustion of
organic matter, they are likely responsible for many of the adverse health and ecological effects observed
[Law and Hellou, 1999; Reynaud and Deschaux, 2006], including potential genotoxic effects [White et al.,
1999] and/or decrease in abundance of benthic communities [Montagna et al., 2013; Schwing et al., 2015].

The purpose of this study was to determine the area of potential environmental impact resulting from the
Hercules 265 incident by tracking atmospheric transport of smoke from the burning rig and following the
prevailing surface water circulation during 20 days after the blowout. We subsequently analyzed the chemi-
cal composition of the sediments, the potential impact to benthic organisms (foraminifera), and the con-
tamination (biliary PAHs) of red snapper (Lutjanus campechanus). This species is very abundant and exhibits
very limited movements, thus high site fidelity as adults and suitable for contamination studies [Westmeyer
et al., 2007; Strelcheck et al., 2007]. To evaluate hydrocarbon contamination around Hercules 265, specifically
we measured hydrocarbons including biomarkers (hopanes, steranes) and PAHs in sediments, and PAH
metabolites as fluorescent aromatic compounds (FACs) in fish bile, which are a sensitive indicator of recent

Figure 1. Locations of the Hercules 265 gas rig, Deepwater Horizon oil rig, and sites sampled in 2011–2012 for previous fish studies (black
circles) [McDonald et al., 1996; Murawski et al., 2014]. Insert shows the cruise track of the R/V Acadiana during 27–30 July 2013 (blue) with
suggested drifter deployment sites (orange), actual drifter deployment locations (red), and drifter trajectories (black) around the Hercules
265 rig (green).
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PAH exposure in fishes [Krahn et al., 1984, 1993, 2005; Varanasi et al., 1989]. To provide further assessment
of the impacts of the Hercules 265 blowout, comparisons with data collected in this region prior to and after
the Hercules 265 blowout and data collected elsewhere in the northern GoM in 2013 were conducted.

2. Field Sampling Procedures

A coordinated rapid response to the Hercules 265 incident [Joye et al., 2014] resulted in deployment of sur-
face drifters to track water masses in the vicinity of the Hercules rig following its blowout and to guide the
collection of sediment and biological samples for assessment of potential contamination levels. An initial
cruise was conducted on 27 July 2013 (4 days after the blowout) with drifters being deployed to follow
ocean surface transport over a period of 20 days. A second cruise to the Hercules 265 site was conducted 36
days after the rig fire was extinguished, to collect environmental samples (sediment, benthic foraminifera,
and fishes).

2.1. Deployment of Surface Drifters, 27–30 July 2013 R/V Acadiana
Accurate (5 m position uncertainty) and rapid (5–15 min position transmission) data collection from the
deployment of clusters of surface drifters are a very reliable method to measure the net surface water trans-
port of all scales of motion on material transport in the ocean [Haza et al., 2014; Poje et al., 2014]. Our strat-
egy followed hexagonal patterns that provides different options for deployment depending on how close
the vessel was permitted to approach the rig, and deployment in triplets for generation of high number of
particle pairs to compute dispersion statistics [Poje et al., 2014] (Figure 1). On 27 July 2013, 4 days after the
fire started, we deployed 20 Lagrangian surface drifters at 608 intervals at a distance of 9.2 km from the
Hercules 265 rig (28.3848N, 90.5248W, Figure 1).

2.2. Sediment and Fish Sampling Cruise on 25 August 2013 R/V Weatherbird II
If hydrocarbons were released in sufficient quantities resulting in transport to the sediments, it is likely they
would impact benthic habitats and potentially enter the food chain. Aggregation of dispersed oil with min-
erals and suspended particulate oiled material and its transport to the seafloor has been documented since
the 1970s in the Exxon Valdez and Arabian Gulf oil spills and in laboratory experiments [e.g., Payne et al.,
2003; Khelifa et al., 2005]. This mechanism for oil transport to the sea floor was also documented to have
occurred after the Deepwater Horizon (DWH) oil spill [Passow et al., 2012; Romero et al., 2015]. Assuming that
petroleum pollution from a point source diminishes/dilutes with distance, our strategy was to test the
hypothesis that the pollution level varied inversely with distance from the rig. To do so, on 25 August 2013,
we sampled sediment cores at sites located within the potential impacted area by the Hercules 265 blowout
as indicated by the deployed drifters (see section 4), and followed a distance gradient from as close to the
rig as we could safely maneuver at 0.2 km (site 1: 28.378N, 90.528W; 45 m depth), at 8 km (site 2: 28.328N,
90.398W; 54 m depth), and at 18 km (site 3: 28.228N, 90.338W; 72 m depth) from the rig. A single, continuous
longline fishing gear set at �0.2 km to a distance of 8 km from the rig was used to collect fishes for analysis
of contaminants.

A multicorer (Ocean Instruments MC-800) was used for the collection of sediment cores in order to mini-
mize disturbance of the sediment-water interface during collection. Cores were subsampled in the labora-
tory at 2 mm (0–20 mm) and 5 mm (>20 mm) intervals. A calibrated threaded rod (one complete
turn 5 2 mm) was used to extrude the cores, where the sample was then sliced [Engstrom, 1993; Valsangkar,
2007]. Extruded samples from cores were designated for organic geochemistry (carbon and nitrogen con-
tent, carbon stable isotopes, and hydrocarbon analyses) and foraminiferal community analysis. Samples
were stored in precombusted glass containers in a freezer (2208C). Frozen samples for organic geochemis-
try analysis were freeze dried and ground using a mortar and pestle.

Fish samples were collected following procedures of Murawski et al. [2014]. We used a bottom-tending
longline, which is an effective sampling technique for demersal species such as red snapper, L. campecha-
nus, a dominant component of the fish assemblage in the area surrounding the Hercules 265 site [Murawski
et al., 2014]. A 544 kg test mainline was deployed, with 91 kg test leaders, 3.7 m long attached to #13 circle
hooks, using cut fish and squid as bait. Hooks were spaced at 18 m intervals along the longline (100 hooks/
nm) with a total of 508 hooks deployed. At the beginning and end of the main line, we deployed Star:OddiVC

CDST Centi temperature/time/depth recorders to record actual bottom time, as well as bottom temperature
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and depth fished. Once the longline was deployed, the vessel steamed back to the start buoy and began
haul-back. The soak time of our set was 3 h 39 min. At retrieval, fish species were determined, and fork and
total lengths were recorded for each specimen caught. The consecutive hook number of each fish landed
was recorded upon retrieval and this number followed the fish through each sampling stage to identify its
position along the set. Each specimen was weighed to the nearest g on a MarelVC motion-compensated
scale, or hand scale (nearest cg) for very large fish. Large sharks (e.g., �2 m and greater) were photographed
for species identification at the rail and released alive. For red snapper, we took bile samples for PAH deter-
minations by dissecting and puncturing the gall bladder and transferring the bile into an amber, prefired 15
3 45 mm vial. Bile samples collected were frozen and stored at 2408C until analysis.

3. Analysis of Collected Data and Samples

3.1. Atmospheric Transport
Given that the Hercules 265 hydrocarbon release was primarily an atmospheric event, modeling of the asso-
ciated atmospheric plume was conducted. The University of Miami Unified Wave Interface-Coupled Model
(U WIN-CM) was used for real-time prediction of the transport of hydrocarbons in the atmosphere, shortly
after the Hercules 265 rig fire occurred on 23 July 2013. The U WIN-CM is a fully coupled atmosphere-wave-
ocean model that has been developed and tested for prediction of the atmosphere-ocean circulation over a
broad range of meteorological conditions from calm winds to extreme high winds in winter storms and hur-
ricanes [Chen et al., 2013; Chen and Curcic, 2015]. The atmospheric model component, Weather and
Research and Forecast (WRF) was configured with triply nested grids of 12, 4, and 1.3 km resolution, respec-
tively. The outer domain covered the GoM and West Atlantic region while the inner nests with increased
resolution to resolve clouds and fine scale features. The University of Miami Wave Model (UMWM) [Donelan
et al., 2012] and the Hybrid Ocean Model (HYCOM) are run at 4 km resolution. U WIN-CM was initialized at
0000 UTC daily and forecast for 72 h. A passive tracer was injected at the Hercules 265 site in the model to
represent the plume from the blowout.

Although the high-resolution regional UWIN-CM provides a tool primarily for understanding the atmos-
pheric transport of hydrocarbons at regional scales affected by the synoptic weather systems, the 1.3 km
resolution cannot resolve large turbulent eddy circulations (LTECs). In this study, a fourth two-way nested
domain with 444 m grid spacing is added in the standard UWIN-CM domain configuration. To further
understand the vertical transport of leaked gases at Hercules 265 site in a typical marine boundary layer
(MBL) capped by a sharp inversion and the impact of shallow cumuli (that existed during the Hercules 265
blowout) on the vertical transport processes in MBL, two different large eddy simulations (LESs) are con-
ducted in this study. One is the classic idealized LES that uses periodic lateral boundary conditions and is
initialized and forced by the prescribed profiles based on the UWIN-CM simulations. The other is the hind-
casting nested Weather Research & Forecasting (WRF) LES, whose lateral and surface boundary conditions
are directly updated from the UWIN-CM simulations through downscaling [Zhu et al., 2010; Zhu, 2008].
While the former is easy to control, the latter can realistically include the inhomogeneity of surface condi-
tion and large-scale forcing as the background field evolves. WRF-LES contains three subdomains with a
nesting ratio of 1/3 (Figure 2). The outmost domain is one-way forced by the UWIN-CM simulation at a hori-
zontal resolution of 1.3 km, whereas the two inner domains are two-way nested. The innermost domain of
WRF-LES has a horizontal resolution of 49.4 m with 86 levels in the vertical in which 40 levels below 2 km.
This is a much higher vertical resolution than that used by the UWIN-CM in which there are 36 levels in the
vertical. The WRF-LES is executed for 24 h starting from 12:00 UTC 24 July 2013.

The idealized LES, which is performed by the System of Atmospheric Modeling (SAM) [Zhu and Zuidema,
2009], aims to investigate the impact of shallow cumuli on the vertical transport in the MBL. SAM-LES is ini-
tialized with the mean vertical profiles of water vapor mixing ratio, potential temperature, and horizontal
wind components of the innermost domain of UWIN-CM. The SAM-LES has a horizontal grid-mesh of 640
points in the west-east direction and 160 points in the south-north direction with a grid spacing of 50 m
equivalent to that of WRF-LES. In order to better resolve the shallow cumuli at the top of the MBL, SAM-LES
has 176 levels below 3510 m with a vertical resolution of 20 m in the vicinity of the MBL inversion. This is a
much higher vertical resolution that that of WRF-LES. The idealized SAM-LESs are executed for 12 h and
tracers are released 3 h later after the start of the simulation to allow for a sufficient model spin-up.
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3.2. Ocean Surface Transport
Launching a cluster of surface drifters provides a means of tracking material transport and for enhancing
our knowledge about the physical oceanography in the GoM, particularly on what scales of motion control
near-surface transport in the region. It has been shown that mesoscale motions predominate in the interior
of the GoM [Olascoaga et al., 2013] while submesoscale motions seemed to prevail within the DeSoto Can-
yon [Poje et al., 2014]. The drifters deployed for the Hercules 265 incident provide a data set from different
geographical locations that allows learning regional distinct transport characteristics in the GoM.

A deeper insight into the Lagrangian circulation in this region can be achieved by isolating the sets of fluid
trajectories that act as skeletons of patterns acquired by the fluid transported by the flow. These are widely
referred to as Lagrangian Coherent Structures or LCS [Haller and Yuan, 2000]. Here the state-of-the-art geo-
desic theory of LCS is employed [Haller and Beron-Vera, 2012; Beron-Vera et al., 2013; Haller and Beron-Vera,
2013; Farazmand et al., 2014]. LCSs are computed using ocean currents inferred from satellite altimetric
measurements of sea surface height [Fu et al., 2010]. Satellite altimetry observations are not direct and accu-
rate measurements of the ocean’s surface velocity field [Chavanne and Klein, 2010], but they do provide a
good estimation of the mesoscale field [Fu et al., 2010]. We explored how much of the Lagrangian circula-
tion in this region can be explained by mesoscale currents like in Olascoaga et al. [2013].

Two types of LCS are considered and their effect on the motion of the surface drifters. LCS of the first type
is of hyperbolic nature and has the property of attracting nearby fluid trajectories. These were computed as
fluid curves embedded in strips of fluid within which the leading-order change in averaged Lagrangian
shear is negligible [Farazmand et al., 2014]. LCS of the second type is of elliptic nature and define optimal

Figure 2. Atmospheric Hercules 265 rig plume: (a) domain configuration of WRF-LES with respect to UWIN-CM; (b) verification of UWIN-CM forecast of tracer concentration (black con-
tour) and satellite visible and infrared composite images (white shading for the smoke plume) on 24 July 2013 at 21:32 UTC; (c) UWIN-CM forecast of tracer concentration (white), sea sur-
face temperature (color), and surface wind (black vectors) during Hercules 265 rig fire; and (d) example of vertical structure of the simulated LTECs by WEF-LES overlapped with potential
temperature.
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boundaries of Lagrangian eddies capable of preserving coherence for extended periods of time. These are
computed as fluid loops embedded in belts of fluid within which the leading-order change in averaged
Lagrangian strain is negligible [Haller and Beron-Vera, 2013].

3.3. Sediment Analyses
Prior to analysis of organic carbon content (% TOC) and stable isotopic composition (d13C), inorganic carbon
was removed from freeze-dried sediment samples following the method of Brodie et al. [2011]. Samples
were then placed in Ag capsules and analyzed using a CarloeErba 2500 Series 2 Elemental Analyzer coupled
to a ThermoFinningan Delta XL. All samples were analyzed in duplicate and data reported as the average
(<1% difference between duplicates). The results are reported using conventional delta notation in per mil
(&) units relative to the Vienna Pee Dee Belemnite (VPDB) standard. The precision for replicate analyses of
external standards (NIST 8573, NIST 8574, and NIIST 1570) was 0.3& for d13C.

Sediment samples were extracted for hydrocarbon quantification using modified EPA methods and QA/QC
protocols (8270D, 8015C). Freeze-dried subsamples were spiked with perdeuterated PAHs (d10-acenaph-
thene, d10-phenanthrene, d10-fluoranthene, d12-benz(a)anthracene, d12-benzo(a)pyrene, d14-dibenz(ah)an-
thracene, and d14-benzo(ai)perylene) and cholastane (d4-cholestane 2,2,4,4) before extraction. Subsamples
were extracted under high temperature (1008C) and pressure (1500 psi) with a solvent mixture 9:1 v:v
dichloromethane:methanol (MeOH) using an Accelerated Solvent Extraction system (ASE 200VR , Dionex).
Activated cu (40 mesh, 99.9%, Sigma-Aldrich, USA) was added to desulfurize each sample extract. Lipid frac-
tions were separated using solid-phase extraction (SPE) with silica/cyanopropyl glass columns (SiO2/C3-CN,
1 g/0.5 g, 6 mL). Silica gel (high-purity grade, 100–200 mesh, pore size 30 Å, Sigma-Aldrich, USA) was com-
busted (4508C for 4 h) and deactivated (2%) previous to assemble the columns. Ultra-clean silica bonded
cyanopropyl (C3-CN, 50 lM, Interchim, USA) was used as well to improve separation of lipid fractions. Lipid
fractions were collected by sequentially eluting the extracts with hexane (100%) to collect biomarkers, and
hexane/dichloromethylene mixture (3:1, v:v) to collect PAHs. Two extraction blanks were included with each
set of samples (10–15 samples).

Biomarkers (hopanes and steranes) were quantified using GC/MS/MS multiple reaction monitoring (MRM)
on a Varian 320 triple quadrupole MS. Chromatographic separation of biomarker compounds was con-
ducted using a RXiVR 5sil column (30 m 3 0.25 mm 3 0.25 lm) with a GC oven temperature programming of
808C held for 1 min, then increased to 2008C at a rate of 408C/min, to 2508C at 58C/min, to 3008C at 28C/min,
to 3208C at 108C/min, and held for 2 min. The GC was operated in constant-flow mode (1 mL/min) with an
inlet temperature of 2758C and a transfer line temperature of 3208C. Ion source temperature was 1808C and
source electron energy was 70 eV. Splitless injections of 1 lL of the sample were conducted. Mass transi-
tions targeted appropriate parent molecular ion masses on Q1 and monitored mass 191.2 (hopanes) or
217.0 (steranes) on Q3, with collision energy held at 10 V throughout. An additional transition (376.7–221)
was monitored to quantify the internal standard (d4-cholestane 2,2,4,4). Ar at a pressure of 1 mtorr was
used as a collision gas. Concentrations of biomarkers compounds were calculated using response factors by
comparison with a known standard mixture and the internal standard. When no commercial reference
standard was available, compounds were quantitated using the response factor for the nearest available
homologue in the same compound class. Biomarker compounds are expressed as sediment dry weight con-
centrations. Recoveries from spiked samples were generally within QA/QC criteria of 90–100%. Procedural
blanks processed with each batch of samples were found to be free of contamination. The precision of the
analytical method used for quantification of biomarker compounds was evaluated by analyzing the stand-
ard reference material NIST 2779 (MC252 crude oil). The determined values ranged between 95% and 100%
of the certified values; while in terms of repeatability, the relative standard deviation was below 20%.

Quantification of PAHs was achieved in a gas chromatograph/mass spectrometric detector (GC/MS) in full
scan mode (m/z 50–550). Splitless injections of 1 lL of the sample were conducted. A RXiVR 5sil column was
used with a GC oven temperature programming of 608C held for 8 min, then increased to 2908C at a rate of
68C/min and held for 4 min, then increased to 3408C at a rate of 148C/min, and held at the upper tempera-
ture for 5 min. The temperature of the MS detector was 2508C. Target low molecular weight PAH com-
pounds (LMW PAHs) were naphthalene (N), acenaphthylene (ACL), acenaphthene (ACE), fluorene (F),
dibenzothiophene (D), phenanthrene (P), anthracene (AN), and their alkylated homologues. Target high
molecular weight PAH compounds (HMW PAHs) were fluoranthene (FL), pyrelene (Pe), pyrene (PY),

Journal of Geophysical Research: Oceans 10.1002/2015JC011037

ROMERO ET AL. TRACKING THE HERCULES 265 BLOWOUT 711



benz[a]anthracene (BaA), chrysene (C), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]-
pyrene (BaP), dibenz[a,h]anthracene (DaA), indeno[1,2,3-cd]pyrene (ID), benzo[ghi]perylene (BGP), and their
alkylated homologues. Also, we defined carcinogenic PAHs (BaA, BaP, BbF, DaA, and ID) as those HMW
PAHs known to be carcinogens for animal and probably human based on the U.S. Department of Health
and Human Services (HHS) and the U.S. Environmental protection Agency (EPA), respectively [Agency for
Toxic Substances and Disease Registry, 1995]. Concentrations were calculated using response factors by com-
parison with a known standard mixture (16-unsubstituited EPA priority and selected isomers: Ultrascientific
US-106N PAH mix, NIST 1491a). When no commercial reference standard was available, compounds were
quantitated using the response factor for an isomer. Therefore, the concentrations determined for many of
the alkylated PAHs were semiquantitative. Aromatic compounds are expressed as sediment dry weight con-
centrations. Recoveries from spiked samples were generally within QA/QC criteria of 60–114%. Some of the
procedural blanks processed with each batch of samples (about 50%) were found to contain background
levels or less of some compounds (two-ring and three-ring PAHs) that ranged from 0.1 to 0.6 ng/g. The pre-
cision of the analytical method used for quantification of PAHs was evaluated by analyzing the standard ref-
erence material NIST 2779 (MC252 crude oil). The determined values ranged between 90 and 98% of the
certified values, while in terms of repeatability the relative standard deviation was below 20%.

Replicate hydrocarbon analyses were done in selected samples from the cores collected. Our depth resolu-
tion of the core samples allowed us to replicate hydrocarbon analyses at only a few depth intervals, where
enough material was available. Confidence intervals (CI) of replicates (N 5 3) for biomarkers analysis were
32.5, 38.5, and 41.8 ng g21 for surface layers from site 1, 2, and 3, respectively. CI values for replicates from
deeper layers in the cores (20–25 mm) were 18.0, 10.5, and 2.9 ng g21 from site 1, 2, and 3, respectively. CI
of replicates (N 5 3) for PAH analysis were 19.0, 18.5, and 22.1 ng g21 for surface layers from site 1, 2, and 3,
respectively. CI values for replicates from deeper layers in the cores (20–25 mm) for PAHs were 13.0, 26.4,
and 3.1 ng g21 from site 1, 2, and 3, respectively. All CI values of replicates were found lower than the vari-
ability observed in concentration from surface sediment layers to downcore in all sites (see Results section).

3.4. Foraminifera Sample Preparation and Analysis
Extruded sediment samples for foraminifera analysis were weighed and washed with a sodium hexameta-
phosphate solution through a 63 lm sieve to disaggregate detrital particles from foraminiferal tests. The
fraction remaining on the sieve (>63 lm) was dried in an oven at 328C for 12 h, weighed again, and stored
at room temperature. Individuals from every other depth interval from the upper 25 mm of each core were
identified to the species-level and counted (total of 75 samples; 23,817 individual foraminifera).

Total foraminiferal density values were reported in individual per unit volume (number/cm3) [Sen Gupta
et al., 2009; Scott and Medioli, 1980; Osterman, 2003; Rowe and Kennicutt, 2009]. Density values were normal-
ized to the known wet volume of each sample based on the diameter of the core tube (10 cm) and the
height of each sample (4 or 10 mm). Fisher’s Alpha index (a measure of species richness) was used to
characterize faunal variability [Hammer and Harper, 2006] between the most recently deposited sediments
(0–8 mm) and downcore intervals (8–25 mm), as well as between sites with distance from the Hercules 265 rig.

3.5. Fish Analyses
Twenty-two of the 26 red snapper caught on the longline produced sufficient bile for analysis (in two cases,
only the fish heads were retrieved, and in two others, the fish had insufficient volume of bile for analysis).
Individual fish bile samples were analyzed for metabolites of PAHs using a semiquantitative high-
performance liquid chromatography/fluorescence (HPLC-F) method [Krahn et al., 1984, 2005]. This method
results in the estimation of relative concentrations of classes of PAH metabolites fluorescing in the regions
typified by naphthalene and alkylated homologues (NPH), phenanthrene alkylated homologues (PHN), and
benzo[a]pyrene (BaP). Bile was injected directly onto an Agilent high-performance liquid chromatography/
fluorescence system equipped with a C-18 reverse-phase column (following Murawski et al. [2014] for meth-
ods). The PAH metabolites were eluted with a linear gradient from 100% water (containing a trace amount
of acetic acid) to 100% methanol at a flow of 1.0 mL/min. Chromatograms were recorded at the following
wavelength pairs: (1) 292/335 nm where many two to three benzene ring aromatic compounds (e.g., NPH)
fluoresce, (2) 260/380 nm where several three-ring to four-ring compounds (e.g., PHN) fluoresce, and (3)
380/430 nm where four-ring to five-ring compounds (e.g., BaP) fluoresce. Peaks eluting between 6 and 19
min were integrated and the areas of these peaks were summed. The concentrations of fluorescent PAHs in
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the bile samples were determined using NPH, PHN, and BaP as external standards and converting the fluo-
rescence response of bile to NHP (ng NPH eq g21 bile), PHN (ng PHN eq g21 bile), or BaP (ng BaP eq g21

bile) equivalents. Quality assurance was monitored through an interlaboratory comparison between Mote
Marine Laboratory and the Northwest Fisheries Science Center, methanol solvent blanks run prior to every
sample, samples run in duplicates, and by analysis of calibration standards of NPH, PHN, and BaP every 12
samples. CV for replicated samples were <15%.

We used linear regression to test for distance effects of PAH contamination, and one-way analysis of var-
iance to test adjacent years for differences in FAC levels between the Hercules 265 samples and those from
the northern GoM taken in 2011 and 2012 [Murawski et al., 2014]. Where the assumption of normality of
data was rejected, we substituted a Wilcoxon’s Ranked Sum Test.

4. Results and Discussion

4.1. Tracking the Atmospheric Hercules Plume
The atmospheric plume predictions from the UWIN-CM were evaluated using a satellite image of visible
and infrared bands taken 2 days after the Hercules 265 fire. UWIN-CM predicted an eastward propagation of
the atmospheric plume, which is in agreement with the satellite image (Figure 2). Being so close to the sur-
face of the water, the plume is affected by marine boundary layer (MBL) dynamics. Further analysis was con-
ducted by computing LTECs from WRF-LES (Figure 2). The LTECs are constrained by the thickness of the
MBL, which varies from 500 to 800 m depending on the time of the day. The output of WRF-LES allowed for
direct computation of the vertical fluxes induced by the LTECs using an eddy correlation method. Vertical
profiles of resolved buoyancy fluxes and total water fluxes were compared directly from the output of the
innermost domain of WRF-LES at 5:30 UTC 25 July, using an eddy correlation method, and compared with
the parameterized fluxes from the UWIN-CM forecast fields of three experiments (Figure 3). The first experi-
ment, which uses the YonSei University (YSU) [Hong et al., 2006] planetary boundary layer (PBL) scheme,
had a resolution of 1.33 km. The second UWIN-CM experiment, which uses a three-dimensional (3-D) turbu-
lent kinetic energy (TKE) turbulent mixing scheme [Deardorff, 1970], had a resolution of 0.44 km. The third
UWIN-CM experiment is exactly the same as the second experiment except that the UWIN-CM standard 36
vertical levels are increased to 71 levels. These three experiments are named as YSU, 3DTKE, and 3DTKE2,
respectively, hereafter. The comparison indicates that the parameterized fluxes by the YSU experiment sub-
stantially underestimate the vertical fluxes. By increasing horizontal resolution to 444 m and doubling
model vertical levels, UWIN-CM generates much larger vertical fluxes, but they are still substantially different
from the fluxes directly resolved by the WRF-LES. This result suggests that a great portion of vertical flux is
contributed by turbulent eddies with scales from 50 to 400 m. Also, WRF-LES has a much higher vertical

Figure 3. The vertical profiles of (a) buoyancy flux and (b) total water flux at 5:30 UTC 25 July from the UWIN-CM simulations and WRF-LES.
‘‘YSU’’ indicates the UWIN-CM simulation that uses YSU PBL scheme and has a resolution of 1.33 km; ‘‘3DTKE’’ denotes the UWIN-CM simula-
tion that uses a 3-D TKE turbulent mixing scheme and has a resolution of 444 m. ‘‘3DTKE2’’ is exactly the same as ‘‘3DTKE’’ except that the
UWIN-CM standard 36 vertical levels are increased to 71 levels. ‘‘WRF-LES’’ indicates the resolved fluxes determined directly from the model
output using an eddy correlation method.
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resolution than that of UWIN-
CM, which indicates that both
horizontal and vertical resolu-
tion are critical for accurate pre-
dictions of vertical transport
scalars in the MBL.

Although WRF-LES has a higher
vertical resolution than that of
UWIN-CM, it may not be suffi-
cient in this case to resolve the
fine vertical structure of cap-
ping inversion of MBL. The
focus of the idealized SAM-LES
is on understanding the impact
of shallow cumuli on the verti-
cal transport of hydrocarbons
(treated as passive tracers) in
the MBL when capping inver-

sion is better resolved. The simulated tracer plume shows that shallow cumulus convection can substantially
affect the vertical transport of tracers (Figure 4), suggesting the importance of shallow cloud processes asso-
ciated with the strong capping inversion to the vertical transport in the MBL.

4.2. Surface Water Transport
After deployment, all drifters clearly show inertial oscillations moving toward the southeast direction
(Figure 5). This surface water transport direction to the southeast as indicated by the drifters is different
from the predominant atmospheric advection direction to the east discussed previously (Figure 2). To assess
the potential aquatic impact area by the Hercules 265 blowout, the center of the mass of the cluster was
plotted, as well as the instantaneous area covered by the drifters using a concave hull algorithm (Figure 5).
This information was used to set the sampling sites for sediment sites (at �0.2, 8, and 18 km from the rig)
and a longline fishing gear (from �0.2 to 8 km from the rig) in SE direction of the Hercules 265 rig.

Within the limitation of the altimetry data set, the analysis of the far-field behavior of the drifters using satel-
lite altimeter data shows drifter motion to be quite reasonably tied to the altimetric attracting LCS and con-
strained as well by the presence of the boundary of an altimetric coherent Lagrangian eddy situated south
of the drifter deployment site (Figure 6). The attracting LCS, for instance, stretches and wraps around, but
does not penetrate the boundary of the coherent Lagrangian eddy. The drifters tend to follow the attracting
LCS and are not seen to traverse the boundary of the coherent Lagrangian eddy, at least over the duration
of the drifter trajectory records. Inspection of a more continuous (daily) sequence of snapshots than that
shown in Figure 6 reveals that after circulating around the eddy, some of the drifters take an eastern direc-
tion following the attracting LCS. These results provide support to the importance of the mesoscale circula-
tion in transporting fluid (along with passive drifting substances and material, such as surface drifters) in
deep waters (away from the continental shelves) of the GoM. It must be noted, however, that the daily
sequence of snapshots also reveals that some drifters wander about the deployment site without adhering
well to the altimetric attracting LCS. Near and over the continental shelf, the submesoscale circulation may
acquire importance, which cannot be reliably resolved by satellite altimetric measurements at present spa-
tiotemporal resolution, as it has been recently noted [Poje et al., 2014].

4.3. Chemical Analyses of Sediments
Sediment cores collected at different distances from the rig (site 1 at �0.2 km, site 2 at 8 km, and site 3 at
18 km) were analyzed to determine differences in chemical content (i.e., % TOC, d13C, PAHs, hopanes, and
steranes) potentially associated with the Hercules 265 blowout. Our approach was to test the hypothesis
that hydrocarbon levels varied inversely with distance from the rig in the most recently deposited sediment
material (top 0–8 mm depth interval in all sediment cores).

Figure 4. Gas leaking from Hercules 265 rig in the cloud topped MBL simulated by SAM-
LES. The black-red shade indicates the tracer smoke mixing ratio greater than 5.0 3 1025

g/kg. The well location is at 1.5 km (x direction) and 3.5 km (y direction) from the coordi-
nate origin. The gray-white shade indicates the cloud water mixing ratio greater than
1.0 3 1024 g/kg.
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Profiles of carbon content, stable isotopes, and biomarker compounds showed no trend with distance from
the well (supporting information Tables S1 and S2; Figure 7). There was a small trend to lighter d13C values
in the surface sediments (0–2 mm) but levels were too low to be related to the spatial trend. Overall, for all
sites and all sediment depths, d13C values were on average 222.2 6 0.9&, carbon content averaged
0.9 6 0.1%, and total biomarker concentrations were 88.2 6 13.7 ng g21.

Naphthalene and its alkylated homologues were the most abundant LMW PAHs at site 1 and site 2
(35 6 9% of total PAHs), while phenanthrene and its alkylated homologues were more abundant at site 3
(14 6 4% of total PAHs). However, profiles of LMW PAH concentrations showed no clear trend with distance
from the well (supporting information Table S2; Figure 7). In contrast, HMW PAHs (not including perylene)
showed a spatial trend only in recent deposited sediment (surface sediment interval< 8 mm) with higher
values at site 1 (up to 223 ng g21) followed by site 2 (up to 168 ng g21) and site 3 (up to 70 ng g21, but
with no clear trend with depth in the sediment; Figure 7). Similarly, perylene was elevated in surface sedi-
ments at site 1 (up to 368.1 ng g21) and site 2 (up to 278.5 ng g21). Also, fluoranthene, pyrene, and their
alkylated homologues increased in surface sediments but only at site 1 (up to 87.3 ng g21). Carcinogenic
PAHs (BaA, BaP, BbF, DaA, and ID) showed a trend with distance from the well in surface sediments
(<8 mm downcore; Figure 7) with the highest concentrations at site 1 (up to 85.5 ng g21), intermediate at
site 2 (up to 55.6 ng g21), and lower at site 3 (up to 25.7 ng g21, with no clear trend with depth). The most
abundant carcinogenic PAHs in surface sediments in all sites were ID (up to 31.8 ng g21), BbF (up to 18.2 ng
g21), and BaP (up to 9.0 ng g21) (supporting information Table S1).

The lack of trend with distance from the Hercules 265 site for hydrocarbons such as biomarkers and LMW
PAHs in recently deposited sediments indicates a negligible petrogenic input from the blowout. In contrast,
HMW PAHs (including carcinogenic PAHs) decreased with distance from the rig in the surface sediments

Figure 5. The state of the drifter cluster after 92 h of release. The trajectories have 6 h tails. The center of mass of the cluster shows clear
oscillations, SE direction, and southward stretching due to an anticyclonic eddy in the GoM. Dark red marks the instantaneous coverage of
the cluster while light red depicts all the regions occupied by the drifters. The arrows show wind data from the NOAA NDBC website (sta-
tions SPLL1 and KMDJ). The full evolution of drifter trajectories can be viewed at http://carthe.org/hercules_info/carthe_hercules.mov.
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indicating higher pyrogenic inputs perhaps associated with the blowout and fire of the rig (supporting
information Table S1; Figure 7). Higher HMW PAHs relative to LMW PAHs can also be observed due to
weathering processes. For example, biodegradation of oil in the water column during the DWH spill [e.g.,
Passow et al., 2012; Ziervogel et al., 2012; Aeppli et al., 2014; Yang et al., 2014] may have target LMW PAHs as
they are more susceptible to microbial degradation [Douglas et al., 1996] and modified PAH distribution in
deep sediments [Romero et al., 2015]. However, they are specific compositional patterns in PAHs that differ-
entiate biodegradation from burn products [Wang et al., 1999; Vane et al., 2014]. The concentration of chry-
sene and alkylated homologues were up to 2–3 times higher in the surface sediments, where increased
concentrations of four-ring to five-ring PAHs like indeno[1,2,3-cd]pyrene were higher than specific LMW

Figure 6. Sequence of selected snapshots of subsequent positions of surface drifters deployed near the Hercules 265 site (blue dots), the evolution of attracting LCS (red curves), and the
boundary of a coherent Lagrangian eddy (green curve) extracted from altimetry-derived currents
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Figure 7. Depth profiles of the total concentration of LMW PAHs (two to three ring), HMW PAHs (four to six ring, without perylene), carcinogens (BaA, BaP, BbF, DaA, and ID), and
biomarkers (hopanes, steranes, and diasteranes) from sediment cores collected in 2013 at �0.2 km (site 1), 8 km (site 2), and 18 km (site 3) from the Hercules 265 rig.
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PAH compounds; all indicative of pyrogenic inputs. Another approach to distinguish between petrogenic
and pyrogenic PAH inputs to the environment is to calculate diagnostic ratios such as fluoranthene to
pyrene and phenanthrene to alkylated homologues (C1–C2 phenanthrene 1 anthracene), because
fluoranthene and phenanthrene are more thermodynamically stable than pyrene and phenanthrene
alkylated homologues, respectively [Sicre et al., 1987; Gustafsson and Gschwend, 1997; Vane et al., 2014].
Higher values of these diagnostic ratios at the surface of the sediments (Figure 7) indicate as well that
recently deposited PAHs are primarily of a pyrogenic source. Also, a low abundance of alkylated compounds
such as 1-methylnaphthalene and 2-methylnaphthalene relative to other PAHs (abundant in diesel fuels,
and also found in wood smoke and burnt peatlands) [Vane et al., 2014] suggest that noncombusted petro-
leum sources are an unlikely source in recently deposited PAHs in the studied area. Therefore, our data
suggest that surface sediments, especially those close to the Hercules 252 rig, contain primarily pyrogenic
PAHs from incomplete combustion of petrogenic sources. However, it should be noted that other weather-
ing process such as evaporation, photodegradation, and dissolution can affect as well the distribution of
HMW PAHs in the study area; therefore, results show pyrogenic PAHs modified by the environment.

Human activities such as combustion of organic matter, fossil fuels, natural gas, and surface oil slicks pro-
duce pyrogenic PAHs [Wang et al., 1999]. In the GoM, pyrogenic PAHs enter the environment predominantly
via coastal erosion and to a less extent through the Mississippi River and atmospheric deposition [Mitra and
Bianchi, 2003; Overton et al., 2004]. Previous studies in the GoM have also indicated an increase of HMW
PAHs associated with episodic events that were related to human activities (e.g., increase in combustion
products) [Presley et al., 1998], natural inputs (e.g., hurricanes) [Mitra et al., 2009], or both [Iqbal et al., 2008].
In 2013, there was no extreme weather condition that may have caused changes in the deposition of pyro-
genic PAHs via coastal erosion or the Mississippi River. However, at the blowout site, burnt residues released
during and after the fire on the Hercules 265 may have contaminated the waters close to the rig with pyro-
genic PAHs. Once pyrogenic PAHs reached the surface waters may have become rapidly associated with
particulate matter and sank to the seafloor southeast of the Hercules 265 rig as indicated by the drifter tra-
jectories (Figure 5). The strong absorptivity of PAHs to minerals and organic particles [Radding et al., 1976;
Luthy et al., 1997; Abrajano and Yan, 2003] has been reported previously to promote sedimentation of
spilled oil [Payne et al., 2003; Khelifa et al., 2005; Passow et al., 2012] and likely with the burnt residues pro-
duced during in situ burning of oil slick during the Deepwater Horizon (DWH) spill [Romero et al., 2015].

We also found high concentration of perylene at all depths in the cores at all sites (Table 1). In general, sites
2 and 3 showed little stratigraphic changes in the relative abundance of perylene suggesting a negligible
input of perylene from the Hercules 265 blowout event. However, at site 1 (the location closest to the rig),
an increase of perylene concentration in surface sediments (supporting information Table S1) suggests a
recent mixed input of PAHs in the aftermath of the Hercules 265 event. Perylene is found frequently at high
concentrations in Louisiana rivers and coastal environments [Iqbal et al., 2008] and it is known to be pro-
duced by early diagenesis of terrestrial and marine precursors [e.g., Wang et al., 1999; Prahl and Carpenter,
1979; Venkatesan, 1988]. However, it also can be produced during combustion [Blumer et al., 1977; Lipiatou
and Saliot, 1991; Wang et al., 1999]. For example, during the combustion of naphthalene, perylene can be
produced via cyclodehydrogenation of the binaphthyls [Howsam and Jones, 1998]. Therefore, perylene pro-
files indicate that recently deposited sediments closest to the rig (site 1) may contain perylene from com-
bustion sources, in addition to natural background sources.

Due to predominance of HMW relative to LMW PAHs throughout the cores in all studied sites, we cannot docu-
ment any significant stratigraphic and spatial changes in the sources of PAH inputs (supporting information Table
S1). However, in the surface sediment interval at site 1, we do observe a general twofold increases in the concen-
tration of total HMW PAHs (not including perylene), suggesting that the Hercules 265 rig could be the source of
increasing surface PAHs and, potentially, a continuous source of PAHs to the sedimentary environment even
before the blowout. For specific PAHs (i.e., carcinogenic PAHs), we observed increased concentrations in surface
sediments at sites 1 and 2 indicating recent inputs in the proximity of the Hercules 265 rig (supporting informa-
tion Table S1). Studies on gas rigs off Texas coast also showed pyrogenic inputs from gas exploration activities up
to 100–200 m from the gas platforms in the sediments [Kennicutt II et al., 1996a, 1996b; Peterson et al., 1996].

The Hercules 265 blowout was a short-term event (2 days) and therefore limited amount of contaminants
were released into the environment. Our results are consistent with the short duration of the event, indicat-
ing PAH concentrations are lower than levels observed in urbanized and industrialized areas worldwide
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[Qiao et al., 2006; Nemr et al., 2012] and are below established concentrations with potential biological
adverse effects [Long et al., 1995].

4.4. Benthic Foraminifera
Benthic foraminifera have been used as indicator organisms for pollution [Alve, 1995; Yanko et al., 1999;
Ernst et al., 2006; Denoyelle et al., 2010] and specifically for petroleum impacts worldwide and in the GoM
[Armynot du Chatelet et al., 2004; Brunner et al., 2013; Schwing et al., 2015]. Specifically, Mojtahid et al. [2006]
found that drilling rigs can affect benthic foraminifera communities by decreasing species richness within a
kilometer of the drilling operation. In our study, foraminifera species richness showed a trend with distance
from the well (supporting information Table S3) with lower values at site 1 and 2 (9.1 6 0.6 and 9.9 6 0.6,
respectively) and higher values at site 3 (15.8 6 0.5). This trend was observed from surface to down core in
all sites, suggesting a possible environmental or human induced effect to the benthic environment before
Hercules 265 blowout.

Haynesina germanica has been documented as an indicator of pollution as it outcompetes other taxa in
benthic foraminiferal communities that are stressed by PAH pollution [Armynot du Chatelet et al., 2004].
In site 1 of our study, the relative abundance of H. germanica was significantly higher (p 5 0.0025) in the
most recently deposited sediments (interval 0–8 mm; 6.2 6 1.4%) compared to downcore values (interval
8–25 mm; 3.1 6 1.3%) (supporting information Table S3). The 50% increase in the relative abundance of the
opportunistic species H. germanica at site 1 coincides with increases in HMW and carcinogenic PAH concen-
trations (Figure 7) indicating a possible short-term effect of the Hercules 265 blowout.

4.5. Fish Analyses
The longline set caught a total of 64 fishes (Figure 8), consisting of Atlantic sharpnose shark (Rhizoprionodon
terraenovae, N 5 27), red snapper (N 5 26), blacktip shark (Carcharhinus limbatus, N 5 5), king snake eel

Figure 8. (bottom) Longline sampling catches of six species of fishes caught as a function of hook number ordered from 0.2 to 8 km from
the Hercules 265 gas rig. (top) The bile concentrations of naphthalene (NPH), phenanthrene (PHN), and benzo[a]pyrene (BaP) metabolite
equivalents for each red snapper caught. The fork length of each measurable red snapper caught is also plotted, as are (bottom) the identi-
ties of each fish specimen caught by hook number.
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(Ophichthus rex, N 5 3), tiger shark
(Galeocerdom cuvier, N 5 2), and Gulf
smoothound (Mustelus sinusmexicanus,
N 5 1). The catch rate was about aver-
age for the northern GoM compared
to previous reports from 2011 and
2012 of 60 and 67 fishes, respectively
[Murawski et al., 2014]. Red snapper
was distributed from 0.2 to 8 km SE
from the Hercules 265 rig. The red
snapper caught varied in size from 42
to 81 cm, with an average size of
63.5 cm FL (Figure 8). Size declined sig-
nificantly with distance from the well
(p< 0.05; using hook number as a
proxy for distance; Figure 8).

We tested the hypothesis of a decline
in hydrocarbon concentration with dis-
tance from the Hercules 265 site using
the concentration of three bile metab-
olites in red snapper (Figure 8). We
chose to focus fish contamination
studies on red snapper as a target spe-
cies because they are relatively seden-
tary as adults. Numerous studies [e.g.,
Westmeyer et al., 2007; Strelcheck et al.,
2007] have concluded that red snap-
per exhibit high site fidelity especially
over the short 36 day time frame from
the beginning of the Hercules 265
event until our sampling date. Ironi-
cally, Westmeyer et al. [2007] con-
ducted red snapper site fidelity studies
at South Timbalier blocks 128, 134,
135, 151, and 152, about 20 km north-

east from the Hercules 265 site (Figure 1). Their work concluded that red snapper had very high fidelity to
individual rigs (about 80%) for a 1 month period. Similarly, Strelcheck et al. [2007] in a study that tracked
recaptures for over a year found that 86% of their recaptures were within 2 km of the original tagging site.
Thus, red snapper seems particularly well suited as a test animal to examine near point-source pollution
from petroleum platforms. Interestingly, the fish tagged by Westmeyer et al. [2007] were substantially
smaller (average fish size 34 cm FL, 36 cm TL) as compared with our fish (average size 63.6 cm FL). In fact,
there was little overlap in the size distributions from the two studies (Figure 8). If larger fish on rigs tend to
move even less than smaller ones, then their use as sedentary sentinels of pollution is even more
appropriate.

Our results indicate that all three FACs showed no trend with distance from the well (Figure 8). The lack of a
significant negative relationship between distance from the Hercules 265 site and LMW PAH uptake prob-
ably indicates that petrogenic hydrocarbon pollution from the event (at least as enter the food chain) was
minimal and confined to sedimentary surface layers, as suggested as well by the sedimentary profiles of
TOC, biomarkers, and LMW PAHs (Figure 7). Likewise, there was no significant difference in NPH and PHN
FACs between 2012 and 2013 near the Hercules 265 site (p< 0.05; supporting information Table S3; Figure 9)
indicating as well no elevated levels associated with the Hercules 265 event. However, this finding must be
interpreted cautiously because the levels of LMW PAH metabolites were significant lower in 2012 than in
2011 perhaps related to depuration following the DWH episode [Murawski et al., 2014]. A site sampled NW of

Figure 9. Change in bile concentrations of three PAH metabolites (NPH: naphtha-
lene, PHN: phenanthrene, and BaP: benzo[a]pyrene) in red snapper sampled in
the NGoM from 2011 to 2013. Data for 2013 were obtained from the vicinity of
the Hercules 265 gas rig. Significance (ns 5 nonsignificant, *significant at p 5 0.05,
and **significant at p 5 0.01) is indicated between adjacent pairs of years.
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Hercules 265 (Stn. 16-150) showed substantially lower levels than at Hercules 265 in 2013, although the sam-
ple size there was small (N 5 6; supporting information Table S4).

While LMW PAHs in red snapper apparently did not increase as a result of Hercules 265, BaP FACs increase
significantly (p 5 0.006) between 2012 and 2013 (Figure 9). Also, there was no significant change between
2011 and 2012 for BaP FACs, unlike for LMW PAHs. HMW (BaP) FACs increased by a factor of 1.7 (mean) and
1.9 (median) from the 2012 baseline (Table S4). The discrepancy between LMW and HMW results for PAH
metabolites is perhaps explained by their origin as discussed previously for the sedimentary record. Many
of the HMW PAHs, including BaP, are combustion byproducts of hydrocarbons including natural gas (pri-
marily composed of methane) [Lima et al., 2005]. The fire on the Hercules 265 rig was fueled by escaping
natural gas and perhaps some refined and unrefined liquid hydrocarbons. It is probable that pyrogenically
derived PAHs settled from the atmosphere at the site and were transported in the prevailing SE water mass
transport direction (Figure 5), as indicated by our samples. Thus, our results are consistent with a pollution
event primarily of pyrogenic PAHs. While the average HMW FACs increased in the 2013 samples over 2012
levels, unlike results for sediments, there was no trend with distance from the rig in the 2013 results. This
may be explained by a number of factors including small spatial scale movements of red snapper (e.g., a
few hundred meters) or their prey, which include both fishes and benthic invertebrates for these relatively
large animals. Alternatively, the source of HMW FACs may have been contact with polluted water moving
from NW to SE along the transect sampled.

Data collected adjacent to gas wells in the western GoM [McDonald et al., 1996], although not directly com-
parable to ours, show some important trends (supporting information Table S4). For LWM PAH FACs, levels
of naphthalene and phenanthrene in the western GoM were 1.7 and 1.9 times greater than the mean levels
at Hercules 265, whereas the level of HMW FACs were about 0.5 the levels found at Hercules 265 (supporting
information Table S4). These data reflect different species, but the ratio of LMW to HMW shows that the
event of increased HMW FACs associated with Hercules 265 is not only unusual with respect to the northern
GoM but to the western GoM as well, further supporting the argument of increased HMW PAHs as a result
of the Hercules 265 event.

5. Conclusions

The rapid response to the Hercules 265 blowout on 23 July 2013 demonstrated the feasibility of a multiin-
stitutional academic collaboration to assess environmental emergencies in the GoM. Two days after the
Hercules 265 blowout, a series of drifters were set to track surface water masses for 20 days and used to
guiding the collection of sediment and biological (benthic foraminifera and fishes) samples on 25 August
2013. A geochemical signature of the event was found in SE direction from the Hercules 265 site in sedi-
ment and fish bile samples as shown by elevated levels of HMW PAHs, typical byproduct compounds of
combustion. The Hercules 265 atmospheric plume was transported predominantly to the east and differed
in direction to the ocean surface transport which was to the SE. We suggest that HMW PAHs reached the
surface waters at the Hercules 265 site and were transported in SE direction under the influence of a meso-
scale anticyclonic eddy until deposition to the seafloor. The levels of contaminants were found to be below
established concern concentrations for the environment [Long et al., 1995] perhaps due to the short dura-
tion of the Hercules 265 event (�2 days) that limited the amount of contaminants released into the
environment.

The Hercules 265 blowout in 2013 occurred against a backdrop of significant oil pollution on the northern
GoM continental shelf from the 2010 DWH spill [Lubchenco et al., 2012; Ylitalo et al., 2012; Romero et al.,
2015; Murawski et al., 2014] and offshore petroleum production since the 1970s. Monitoring studies in the
aftermath of DWH provided not only the opportunity to serendipitously sample around the Hercules 265 as
part of a preplanned oceanographic cruise but additionally to gather important baseline contamination lev-
els that were available from the vicinity of Hercules 265 with which to compare pollution levels caused by
the blowout. This scenario emphasizes the importance of an ongoing ocean observing system in the GoM,
including routine sampling of waters, sediments, invertebrates and fishes for oil contamination in order to
understand the cumulative effects of chronic oil releases, and acute events such as the DWH [Murawski and
Hogarth, 2013] and Hercules 265. The fact that the only published information with which to compare
Hercules 265 effects was from a study more than two decades prior to the Hercules 265 event should serve
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notice that such information is seriously out of date relative to developments in the industry (e.g., deeper
exploration and enhanced production). Furthermore, because there are multiple chronic, low level releases
of hydrocarbons to the GoM [e.g., Presley et al., 1998; Santschi et al., 2001; Mitra and Bianchi, 2003;
Kvenvolden and Cooper, 2003; Ocean Studies Board and Marine Board, National Research Council, 2003;
Overton et al., 2004; Iqbal et al., 2007; Murawski et al., 2014] resolving the effects of a single event requires
broad-based and spatially resolved sampling. Given the frequency of these serious pollution events (e.g., oil
spills, gas, and oil blowouts) and others such as hurricanes [Hom et al., 2008], it seems prudent to conduct
such baseline studies on a regular basis.

References
Abrajano, T. A., and B. Yan (2003), High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments, in Treatise on

Geochemistry, Environ. Geochem., vol. 9, edited by B. S. Lollar, pp. 475–510, Elsevier, Italy.
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